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ABSTRACT

Several examples of the numerical evaluation of an integral
equation for the calculation of the attenuation of a radio wave are given.
These waves are assumed to be provagated over realistic, smoothly
varying irregular, inhomogeneous terrain. Results for propagation
over a cylindrical earth show an accuracy to 3-4 significant figures
when compared with the classical residue series, Calculations for
propagation over smooth mixed land-sea paths agree with classical
methods. The applicability of the program to permit computation of
propagation over terrain with smooth height variation is demonstrated
by calculations of propagation over one and two Gaussian-shaped hills,
The ability of the program to allow treatment of variations in both
ground conductivity and height combined is illustrated by calculations
of propagation from the sea up a sloping beach and by calculations of
propagation over an island. This last example illustrates the

importance of the terrain profile in mixed path calculatioas.
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1. INTRODUCTION

Despite numerous attempts, a numerically feasible way to
calculate the field strength of a radio wave propagating over realistic,
smoothly varying, inhomogeneous terrain, has not yet been found,
Hufford (1952) developed an integral equation for such propagation by
using fhe free-space Green's function in Green's second identity and
showed that his solution yielded the classical result for propagation
over a smooth sphere, Berry (1967) succeeded in solving the equation
numerically for verticaily polarized radio waves, showing sample cal-
culations up to 10 MHz, If the normalized surface impedance is not
much smaller than 1, the numerical techniques are very inefficient,
however, and round-off errors accumulate so fast that the results are
not useful, For normal ground constants, this condition excludes all
horizontally polarized waves and all vertically polarized waves above
a few megahertz,

The method used in this paper is based on an elementary function
that is closely related to the Sommerfeld flat earth attenuation function,
This elementary function satisfies a scalar 'parabolic' wave equation,
The resulting integral equation is numerically feasible for both vertical
and horizontal polarization and for normalized surface impedances in
the HF band,

The problem to be solved is illustrated in figure 1, which shows a
possible propagation path, The signal at the receiver is affected by the
mean curvature of the earth, height profile along the path, and the change
of surface impedance along the path, The changes may be abrupt (e.g.,
at a land sea boundary), or gradual (e,g., as the sea state, temperature,
or salinity change), The problem of abrupt changes in surface imped-
ance at smooth land-sea boundaries has been solved (Wait, 1964).
Numerical results for changes in surface impedance have been calcu-

lated by Rosich (1968, 1970).
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The present work allows the terrain to be represented by a
completely arbitrary profile in terms of the elevation versus distance,
The hills and valleys themselves are taken to be uniform in the direction
transverse to the propagation direction, The terrain may also be char-
acterized by a conductivity and dielectric constant which are functions of
distance,

The main body of the report describes the results of calculations
for several examples including paths similar to that in figure 1, The
a.p/pendices contain the derivation of the integral equation, the necessary

,Kumerica.l analysis, and a listing of the Fortran computer program,

2. THE INTEGRAL EQUATION

The derivation of the integral equation is given in appendix A, The
details will not be reiterated here, but the final result is (Ott, 1971)

X
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where x, £, y(x) and y(g) are defined in figure 2, The factor (p- Ar)
arises in mixed-path problems, That is, substituting AL for A in (A-2)
and (A-9) will yield the difference (p- Ar)' The factor A, is constant
with distance and is the relative value of the normalized surface
impedance, This factor is computed using the values for 5 and ¢ . for
the first section of a mixed path, The factor A varies with distance in
a mixed path problem, The variation of pwith x may be continuous or
contain abrupt changes, The factor (A- A r) is zero for a single section

path, The remaining factors in (1) are defined as
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f = frequency, in MHz

g = ground conductivity

e, = dielectric constant

g(x,y) = antenna pattern factor,

Equation (1) gives the integral equation for the attenuation function
normalized to twice the free-space field, The details of the

numerical solution of (1) are given in appendix B, Since the upper



limit of integration in (1) is x, the effects of backscatter are excluded,
That is, to include the effects of backscatter, the range of integration

would have to include the entire terrain, Also, the integral equation

in (1) neglects the effects of side-scatter since the derivation of (1)
assumed ridges uniform in the direction transverse to the propagation
direction, In the case of small slopes and the transmitting antenna

near the earth, side-scatter and backscatter are second order effects,

3. EXAMPLES

In this section we examine the behavior of the attenuation function,
f(x),for eight terrain profiles, y(x). Comparisons of results from (1)
-with previous results for a flat earth, a smooth homogeneous cylindrical
earth, a smooth sea-land-sea path and a single Gaussian-shaped ridge
seem to validate the technique, Its more general applicability is illus-
trated by calculations for propagation over two Gaussian hills, over an
island that rises above sea level, and over a sea-sloping beach with a
sand-dune path,
3.1 A Flat Earth
y(x) =0, y/(x) = 0, The solution of the integral equation (1) is
trivial and is simply

f(x) = W(x), (2)

where W(x) is the Sommerfeld flat-earth attenuation function (Wait,
1964).
3.2 A Parabodoidal Earth

y(x) =~ -x2/2a, y’(x) = -x/a, where a is the radius of the
cylinder and is taken to be about 6, 37 y 10 kilometers, The frequency
of the transmitting antenna is 1 MHz and is vertically polarized, The
ground constants are: g= 0,01 mho/m and €, = 10. The magnitude
and phase of the attenuation function versus horizontal distance; x are

given in table I, These results are compared in table I with thpse

-6-



obtained using the residue series (Wait, 1964) for the attenuation function.
The agréement is seen to be very good out to the largest distance com-
puted. I‘?or example, at 300 km, the difference in the phase between the
integral equation method and the residue series method is about 0. 009
rad. or about 0. 5°. The greatest error in amplitude occurs at a distance

of 150 km and is about 2 units in the third significant figure. The error
decreases on either side of this point, a characteristic common to many
numerical solutions. The results obtained in table I are for a step size,
h =1 km; however, a step size of 2 km did not change the results
appreciably. A detailed error analysis is beyond the scope of this paper.

The last significant figure of agreement in table I is underlined.

Table I. Attenuation function versus distance

Integral Equation Solution Residue Series Solution
Horizontal
Distance, x Phase Phase
(km.) Amplitude (rad.) Amplitude (rad.)
0 1.0 0 1.0 0
25 0. 51331 -1.9717 0.51332 -1.9709
50 0.28936 -2.5929 0.28970 -2.5921
75 0.17575 -2.9597 0.17595 -2.9556
100 0.11506 3.0902 0.11520 3.0892
125 0.08044 2.9126 0.08000 2.9131
150 0.05914 2.7606 0.05939 2.7663
175 Q. 04504 2. 6169 0. 04502 2. 6120
200 0.03512 2.4736 0.03509 2.46890
225 0.027381 2,3278 0.02777 2.3213
250 0.02224 2.1780 0.02221 2.1710
275 0.01790 2.0249 0.01788 2.0168
300 0.01447 1.8681 0.01446 1.8591
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The time required to compute the attenuation function at inter-
vals of one kilometer out to a maximum distance of 300 km was about
25 min using a CDC 3800 computer. The time required to compute the
attenuation function for a specified profile is approximately proportional
to the square of the number of points used along the abscissa. Thus, in
the above example, if the maximum distance were 150 km rather than
300 km, the time required would be about 1/4 as much, or about 6 min.
The sample input and output data given in appendix C pertain to this

sample.

3.3 A Gaussian-Shaped Ridge

= e-(x-5)2 » ¥/ = -2(x-5)y. This is a more interesting profile

y
at least from the standpoint of radio propagation. The profile together
with the magnitude of the attenuation function versus distance are shown
plotted in figure 3. The magnitude of the attenuation function \f(x)\ s
is normalized to twice the free space field, 2 exp( -ikro)/ T e The ob-
server is located on the terrain and the transmitter is located at the
coordinate origin. The ground constants are ¢ = 0,01 mho/ m and
€. = 10, The transmitter is vertically polarized and the frequency is
1 MHz. The terrain profile shown in the insert has a maximum height
of 1 km and the hill is centered at a point 5 km from the transmitter.
The solid straight line in figure 3 is the attenuation function, W(x),
for a flat earth.

The data in figure 3 represented by crosses was obtained by
replacing the Gaussian-shaped ridge with a rounded knife-edge
and computing the field on the surface shown dashed in figure 4
using ""4-ray theory' (Schelleng, et. al., 1933). The radius of the

roanded knife-edge is 500 m (which is the curvature of the Gaussian
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hill at its crest) and the knife-edge is located 1 km above the plane

y = 0. The four rays are the two rays that strike the knife-edge on the
illuminated side plus the two rays that reach an observer in the shaded
side i.e., a direct diffracted ray and a ray which is diffracted and then
reflected before reaching the observer. The results in figure 3 show
excellent agreement between the points computed using '"4-ray theory"
and those obtained solving the integral equation numerically,

The open circles in figure 3 were computed using the Hufford
integral equation (Hufford, 1952). Since there are fewer approximations
in the Hufford integral equation than in the results presented in this
paper, the former should be considered the most accurate., Hufford's
integral equation shows a slight dip in the attenuation function at a
distance of about 9 km which is exaggerated by the solid circles but
does not appear in the knife-adge results. Also, the open circles dif-
fer somewhat in the shadow from the results presented earlier by
Berry (1967). There were projectioa factors, of the form JW,
omitted from Berry's results since in most applications these factors
are nearly unity, i.e., y’ is small. However, in the present example
these factors become important,

The solid circles in figure 3 present the attenuation function
computed numerically using the integral equation in (1). We find some
error in the results obtained using the integral equation presented in
this paper around 6 km and 9 km. However, the error is small and is
exaggerated in this particular example because of the large slopes
encountered on the terrain profile. The error is a result of the
assumptioa that

Rl

d x° =0,

or that the fast phase variation of ¢ with x 1is in the term exp(-ikx).
In most terrain profiles, this will indeed be a good approximation and,

in fact, in the present example yields adequate accuracy.
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The physical characteristics of the results in figure 3 are inter-
preted most easily using the ray picture., The attenuation function
decreases at the flat earth rate for the first 25 km. Then, as the
observation point moves up the crest of the hill, the attenuation function
increases due to focusing of the direct ray and the surface ray on the
lit side of the crest. The attenuation function reaches its maximum
value very close to the point on the terrain where there is an inflection
point. This increase in the amplitude to a maximum on the lit side near
the crest has also been predicted analytically by Wait and Murphy
(1958). Just over the top of the hill the attenuation function decreases
since the direct ray is no longer present and then the attenuation func-
tion partially recovers again due to the constructive interference of a
direct diffracted ray and a diffracted ray traveling along the surface

before reaching the observer.
3.4 A Sea-Land-Sea Path

The terrain profile is flat in this example and the ground con-
stants change abruptly at the sea-land, land sea interfaces. This
example was selected as a check on the mixed path capabilities of the
method. The results for the magnitude of the attenuation function
normalized to twice the free space field are plotted in figure 5 versus
distance from the antenna in km. The antenna is vertically polarized
and the frequency is 10 MHz. The solid circles represent the attenua-
tion function computed numerically using (1}). The open circles in
figure 5 represent the attenuation function computed by Rosich (1968,
1970) using a perturbation approach. The data given by the crosses in
figure 5 represents the attenuation function computed using a method
based upon the classical residue series (Furutsu, et, al., 1964), This
method is equivalent to that of Wait (1964)., This latter method makes

the fewest approximations for the three section earth considered in
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this example. The agreement between the solid circles representing (1)
and the crosses, appears to demonstrate the validity of the formulation
in treating mixed path propagation problems. The abrupt changes in
conductivity and dielectric constant used in this example do not repre-
sent a realistic sea-land interface. The method is, however, capable of

treating a continuous variation of conductivity and dielectric constant,
3.5 A Sea-Land-Sea Path With An Island

This example combines terrain features and mixed-path effects,
The island is drawn to scale in figure 6 and its elevation is 250 m at the
highest point, The magnitude of the attenuation function normalized to
twice the free space field versus distance is plotted in figure 6, The
antenna is vertically polarized and the frequency is 10 MHz, For com-
parison, the magnitude of the attenuation function for a flat island is
also shown in figure 6. The most significant feature of figure 6 is that
the terrain profile has a greater effect on the attennation function on the
island than do changes in the ground constants, and the residual effect
of the profile well beyond the island is comparable to that of the change

in ground constants.
3.6 A Sloping Beach At High And Low Tides

The profile is drawn to scale in figure 7 and the assumed ground
constants used for the wet and dry sand are given in the figure, The
transmitter is out at sea, As the tide rises, the wet sand in figure 7 is
covered by water and as the tide recedes it exposes the wet sand. The
magnitude of the attenuation function versus distance is shown plotted in
figure 7. There is little difference in the attenuation function at high
and low tide, However, the presence of the crest in the beach produces
a peak in the attenuation function on the lit side and a shadow in back.
This illustrates the importance of the terrain profile in mixed path

problems,

-14-
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3.7 Two Gaussian Hills

The profile is drawn to scale in figure 8. The separation of the

hills is such that a null instead of a peak in the attenuation function is

produced on the lit side of the second hill, Obviously there are an infinite

number of combinations of hills that will in turn produce an infinite
number of possible combinations of nulls and pzaks in the attenuation
function. The method will, in principle, treat any number of hills and
valleys. The hills need not have Gaussian profiles; any smooth func-

tion of distance is acceptable.
3.8 A Gaussian Hill (transmitting frequency of 10 MHz )

The profile as well as the magnitude of the attenuation function
versus distance is shown in figure 9. The results in figure 9 differ
somewhat from those published earlier by Berry (1967). Near the
crest of the hill small oscillations in the attenuation occur which were
not present when the transmitting frequency was 1 MHz. One possible
explanation for these wiggles is numerical instability. However, this
explanation was discarded when finer subdivisions of the integration
interval failed to remove the oscillations. At present, they can only be
explained in terms of an interference effect between a ground-reflected
wave and the ground wave the former being stronger at 10 MHz than
at 1 MHz, This case represents a quasi upper limit in the capability of
the computer program in terms of frequency and slopes. That is,
higher frequencies can be treated but the terrain cannot change as fast
as it does in figure 9. Conversely, more rapid changes in terrain can
be treated provided the frequency is less than it is in figure 9, Since
the slopes in figure 9 are near unity, we have a heuristic uncertainty

principle for our computer program

v £ < 10 (MHz) .

-17-
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4. RECOMMENDATIONS AND CONCLUSIONS

The numerical evaluation of an integral equation for the propaga-
tion of radio waves over irregular, inhomogeneous terrain is demon-
strated for several examples. Some of the examples provide a realistic
picture of the attenuation of a radio wave when it encounters a terrain
anomaly, such as a large conducting ridge. The Gaussian-Hill example
at 1 MHz yields physical insight into a focusing phenomenon of the field
just before the crest of a hill that cannot be predicted on the basis of
simple diffraction theory, but is in fact predicted by the numerical
solution of the integral equation. However, ray theory in a concave
region with multiple reflections may work.

It appears that the results discussed in this report represent a
useful tool for analyzing the attenuation loss of a radio wave as it en-
counters terrain anomalies such as hills, valleys, land-sea interfaces,
etc. The computer program for this analysis is listed in appendix C.
However, there are improvements that should be studied. They are
listed below in an order not necessarily representing their relative

importance.

1) A three-dimensional model of the terrain. It should be
determined if the energy follows a geodesic and if the

effects of transverse curvature are important or not.

2) Since the solution represented by the integral equations
does in fact represent a solution of the wave equaiion
plus boundary conditions, it applies to VHF frequencies
as well as HF frequencies. Consequently, numerical
techniques should be studied so that the program will
handle VHF frequencies efficiently.

~20=-




3) Real antennas rather than an idealized point source with
an arbitrary pattern factor should be investigated;
especially when a large diffracting obstacle is within

the first Fresnzl zone of the antenna.
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APPENDIX A: Derivation of the integral equation

Consider a solution, ¢, of the wave equation

. 0° 32
(i) aT;p+g2cP- + kP = -2T1T(x,5) » v> y(x)

which satisfies an impedance boundary condition of the form

..y O ikA
(@) = ===—=% _, y=y
N 1+(y')?
where ¢ represents the vertical component of E for the case of verti-
cal polarization or the vertical component of H for horizontal polariza-
tion. The time depend=nce is exp(iwt) and the normalized impedance,

A, near grazing is

- s vertical polarization
A =
A =1 R horizontal polarization
with
., o
= "ve
o

where €. is the dielectric constant, 0 is the conductivity and w the
angular frequency.

The source distribution is T(x,y). Let

o =e ™ yx,y)
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e

and i) becomes

3% -1 ikx
- —_— T - T
5y 2ik o 27T (x,y) e

3
2y,
dx®

Assuming that the fast variation with x occurs in exp(-ikx)
Y
2 0
or that 3%{y/3x° is small compared with remaining terms we find

- .
oV i - 21 T(x,y) oKX (A-1)

dy? d3x

An elementary function for (A-1) is (Ott and Berry, 1970)

23k -ik(n -y)® / 2(€ -x)
W T GlayiEm) = S
J E-x
. -ikbn @ .
t 1kA—e. j exp{ -ik(t-y)° / 2(€ --x)}elkAt dt,x < ¢
J € -x
e-ik(ﬂ -y)? / 2(€ -x)
= W(x,8), x <E&.
J; -x
| 2ik -
G(x,y;€,m) = 0, x >¢§ .

L
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The function satisfies

3°%G ., 3G
+ 2ik—— = 2#mg(x- g, - A-3
Sy 2 S 8 ( Ey Y-n) ( )

The constant on the left-hand-side of (A-2) comes from integrating both
sides of (A-3) over the region R = { %, Vi- 0o<cX< o, VX)<V <o} .
Multiplying (A-1) by G, (A-3) by y, and subtracting and inte-

grating over the region R yields

3%y _ . 3G
lﬂGaﬁ ¢aﬁ)ckdy mkjﬁc +wax)&cw
R R

- _2m JTeikxTdedy-i-ﬂﬂ;(P) (A-4)

where P is the observation point (£,m) and 3 is a region around the

source, The divergence theorem yields on the surface y(x)

32 aw ¢ 26 .
G =—= - dx G=— - d
W( dY® dlaﬁ ) dy f( ay )en " ey de
R

where e, is the outward directed normal (into the surface) and C is a

contour enclosing R and

-26-




VY 2

and along y = y(x)

dc=J1+ (v'? dax

Also

J
R

2k ([ ¢ %+W§§)dxdy=21k 0=
R

(GV) dxdy

(A-6)

From (ii), and neglecting 3y /3x compared with other terms

Ay _ . er 1
ay—lkﬁ‘-\f -iky" §

and substituting (A-5), (A-6), and (A-7) into (A-4), and assuming { = 0,

(A-7)

for x = 0, which means neglecting backscatter from the region x <0,

and all sources are in the region x> 0,

: G

g

-] [ikM;G-iky’\\;G-\b%;]dx-Zikj Gyy’ dx

(o]

.
+2m ‘f T e" G dxdy = 74 (P)
5

=27~
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or

g€ . .
j \:-ikA\kG—iky'\lJG+\k§$]dx+ 2 JETG e axdy =1 (P)

o % (A-8)

Substituting (Ott and Berry, 1970) ‘
\

11< aG : ] ik . ik exp{ -1k(n- 2 /2(5-x)} [n (A-9) ‘

in (A-8) gives

-1kj {-Y ‘L[G wexp{ 1k(ﬂ-Y)2/2(§-X)}[ ]} dx
S JE 5-

+2m 'l'Gelkxdxdy=1T¢(P).

d

™

~ik(€ -x)

Reintroducing © and defining G =G e yields

g

;ﬂi{y

2T

- exp-ik{(§ -x) + [(n-y)*/ 2(E -x)1} [g ]}dx

oG -
NE -x i
l‘

0 &

+ﬁ-'r(3dxdy=%- qa(P)e"ikg (A-10)
=
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We assume that the antenna has a phase center where the source

distribution, T(x,y), is located. Then we write

T(P) = g(P){-exp ‘L—lk x + ﬁ\ J \/x} 6 (x,v) (A-11)

where (x+ y°/2x) is the first two terms in the binomial expansion for
the distance between the source point O and the observation point at P,
The function g(P) represents the antenna gain or pattern factor. We

also introduce an attenuation function f(P) defined as
_ NI —
o(P) = 2{(P) exp;L -1 k\\x + Zx/) ]/,Jx (A-12)

When these two equations are substituted into (A-10), we find (inter-

changing (§,1n) with (x,y))
f(x) = glx,y) W(x, o)

X 1

- E‘_ i ¥ 'ikw(x:g) ’ )il H
= | @) e {y' @ W) -3 [i(x-é).l dg

o

(A-13)

where

_{ym)P | n*
W(X,g) - 2(x-§) + Zg = %

y = y(x)
n = y(§)
which differs slightly from the result in Ott and Berry (1970); see for

example Ott (1971).
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1
W(x,8) =1 -i JTp e % erfc(iu?

ik A -
p = 2k z(x ) (A-14)
- _xy-m \®
u p {1 A(x-é)} » 5 <x

References
(A-1) Ott, R. H. and Berry, L. A. {1970), "An alternative integral

equation for propagation over irregular terrain, ' Radio

Science, 5, No. 5, pp. 767-771.
(A-2) Ott, R. H. (1971), "An alternative integral equation for
propagation over irregular terrain, Part II, " to be published

Radio Science, May.
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APPENDIX B: Numerical Analysis

The integral equation (1) or equivalently (A-13) is of the form of
a linear Volterra integral equation of the second kind, i.e.,

X

f(x) = g(x) - c .|l f(s) K(x, s) ds (B-1)

o
where f£(x) is the unknown attenuation function whose value is to be
determined in the interval 0 < s < x . The function g(x) and K(x, s)
are known, and c is a constant, If g(x) is bounded and continuous
and if

x
j |K(x,s)] ds<L<e (B-2)

o

then the solution will be unique and continuous (Wagner, 1953). This integral
equation can be solved by a stepwise calculation that divides the interval

x into subintervals of arbitrary width,

That is, consider the subdivision

1 %X
fx) = Wee) - (/A | He)K(x_,8) ds
(o]
X nxn
+ | H(S)K G p8)ds + o + [ f(s)K (x, 5)ds)
% X 1
n- (B-3)

The unknown function, f(s), is fitted with a polynomial of the form

f(s) =a, +ta;s + ay g2 (B-4)
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Increasing the degree of the polynomial to 3 or higher would
result in even higher accuracy; however, the algebra becomes more
complicated and sufficient accuracy can be obtained with the polynomial
of degree 2. In some examples, the solution may become unstable for
the higher degree polynomial and oscillate between the fitted points.

The solution of the integral equation requires special starting
procedures, We suggest that the interpolating polynomial be of the form

3 3/2
f(s) =0y + @y 8° +0Q; s +Qz s sy 0= s=3x (B-5)

and to use (B-4) for % < s< X - The choice in (B-5) is a logical one if
we assume the terrain is flat in the immediate vicinity of the transmit-
ting antenna. If the terrain is flat the exact answer for the attenuation
function is then in fact a half-order power series in the numerical dis-
tance. Requiring the polynomial in (B-5) to pass through the first four

consecutive points yields

% = 1.0 | (B-6a)
QA =R1f(xl)+Ref(xa)+Ref(Xs)+1;<4 (B -6b)
0 =Rgf(xa) + Ref(x) + Ry f(x3) + Rg - (B-6c)
0z = Rof(x) + Rof(%) + Riyf(x) + Rus (B-6d)

The constants in (B-4) are found by requiring the polynomial to pass
through the points X 50 X and X, . It is a simple exercise to show

that

3, =Rz f(Xi) + Rig f(Xi-l) + Rlsf(Xi_z) (B-7a)
2, =Ryg f(xi) + Ry f(xi_l) + Ry g f(xi_z) (B -Tb)
8, = Rug £x)) + Roo £, ;) + Ron £, ) (B-7¢)
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where the R's in (B-6) and (B-7) are defined as

D= (% %X )%[xl (x.a%"xe%) + 3% (xlé-xs%) +x5 (’%%"Xl%) ] (B -8a)
R, = %% (et /D /'/ " (B-8b)
Ry =x% (Xll'}c}%)/ (B-8c¢)
Ry =3 3% (XQ%"xlz)/D (B -84d)
R, =[ % (o 3/2_ 3/2) % ( 13/2_‘%3/2) }%(}%3/2—x13/2)]/D (B -8¢)
Rs =(3‘22X.3)Z(Xe -%3 )/ D (B -81)
Re = (xl}%)% (% - )/ D (B-8g)
Ry = (xl&)%(xl -% )/ D (B-8h)
R, [ 11( 3/2_ 3/2) &%( 3/2 “13/2)+ z( 3/2_ 3/2)]/13 (B-81)
R, = (&&)%(&%-&%HD (B-8j)
R, = (5%)° (a7-%%)/D (B-89
Riy = (x Xg)% (&%-xl%)/D (B-8)
Rz = [xli(& -3 ) +x9%(xl %3 ) +X:3%(Xe -3 )]/ D (B-8m)
D = ey =g [ o O g )b % | (B-8n)
Ras =% 4 (s 5 = %) Dy (B-80)
Ris =x %, (x - %, )/D (B-8p)
Ras = 3% by - %)/D, (B -83)
Rig = (x?;_1 - "i_z)/Di (B-8r)
Ryp = (&_, - )/D; (B -8s)
Ryg = (xﬁ - xzi_l)/Di (B-8t)
Ras = by 5 = %00/ D5 (B -8a)
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Rao = (x, -x, ,)/D, (B-8v)

Ry, = (Xi-l - xi)/Di (B-8w)

Using our polynomial interpolation formulas for £(s) we find

that the integrals in (B -3) all have the following generic form

X.
P, (xi ; xj, xk) = j‘ ’ s{'/ZK(xi , 8) ds (B-9;
*k
with
0< k< j-1
1<j<i
2<i<n (B-10)

t=0,1, 2, 3, 4.

These integrals are evaluated numerically using a five point Gaussian
integration formula with special attention given to those integrals having
singularities at either of the endpoints of integration.

Substituting (B -4) through (B-10) into (B-3) yields the following

: t
general expression for f(x) at the i b point

, ,
£3) { 1+ @)% Rus (DR (6 1, i-11+Ry e WP (5, 5, 1-1)4Reg () (3, 5,4-1) [}

L 3 :
=WE-E/A) ] ) B Gads3-1D4Re ) pr(d 52314 ) B (13, 3-1)

j=1 j=1 j=1
\
3 3 3
+Riz ) B (5,3, 5-DH[ R ) B (6 3,5=1) + Re), B (5,5, -1)
j=1 - j=1 j=1

-34-



|
|

3 3 3
R, Y (03,30 @[ Ra Y b 3,104 ) o (gD
j=1 j=1 j=1

3
+R102P3 (i,353-1) Ry g (4)p, (i5 45 3)tRy g (4)p2 (i, 4, 3)+Rs, (4, (i, 4, 3)]
j=1

3 3 3
+13)| Ra ) pu (1o 3-1+Ry ) pa (i ,3-1) +Raa zlps (5, ,3-1)
=1 j=1 j=

+R14 (4)Po (i’ 4: 3)+R1'7 (4)k (i’ 43 3)+R20 (4)P4 (is 4: 3)+R15 (5)Po (i’ 5’ 4)

i-2
+Ryg (5P (3, 5, 94Rss (5)m (1, 5,4) | + ) £m) [ Reg (m)py (G, m, m-1)

m=4

+R; 4 (mt1)p, (i, m+1l, m) +R; 5 (m+2)p, (i, m+2, m+1)

+R; g (m)p; (i, m, m-1)+R; , {m+1)p; (i, m+1, m) +R; g (m+2)p;, (i, m+2, m+1)
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+Ryg (m)py (i, m,m-1)+Rg, (m+1)p, (i, m+1, m)+Rp; (m+2)p, (i, m+2, m+l)]

+f(i-1)[Rls(i-“Po(is 1-1i=2) + Ry, (i)p, (i, 1, i-1)4Ry ¢ (i-1)ps (i,1-1,1-2)

¥Ry o ()15 (i, 1, 1-1)4Rag (1-1)ps (3, 1-1,1-2)+Re o (i)ms (i, i.i—l)]} (B-11)

Reference

(B-1) Wagner, Carl (1953), "On the numerical solution of Volterra

integral equations, "' J. Math. and Phys. 32, pp. 289-401.
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APPENDIX C: The Computer Program and Flow Chart

Program Wagner implements the procedure given in Appendix B
for solving the integral equation derived in Appendix A. Flexibility is
obtained by using appropriate versions of three subroutines:

(1) TERRANE, which returns the height, slope, and ground con-
stants (0, € r) as a function of distance, x. By writing appropriate
statements in this subroutine the user can define any propagation path he
needs. The general form of the subroutine TERRANE is shown on page 49,
and two particular implementations used for examples in this report are
listed on pages 50 and 51 .

(2) DISTX, which returns the set of distances x(I) at which the
function F(x) will be calculated. The general form of DISTX is shown
on page 45, and two particular implementations are shown on pages 46
and 47.

(3) KERNL, which computes the kernel of the integral equation.
Program Wagner can be used to solve other integral e;;uations of the
form (B-1) if the kernel includes the factor [ s(x-s)] 2 by modifying
subrouatine KERNL. For example, WAGNER can solve Hufford's
integral equation.

Comment cards in the listings that follow explain the program's

operation. The input card sequence for Program WAGNER is
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Card

2 tarough 4

5 through N+4

N+ 5

N+ 5

Cols.
1-10

3-33 & 36-66

1-10

1-10

11-290

21-30

Description
The number of Gaussian quadrature abcissas
and weights (5 recommended)

Values for the Gaussian weights and abcissas.

The N points at which the attenuation func-
tion is to be calculated. These distances
are read in kilometers, by DISTX,

A blank card which signals the end of the
distance deck when the form of DISTX is
that given on page 47. When DISTX takes
the form given on page 46, no blank card
is required.

Source height in kilometers.
Frequency in Megahertz.

Polarization, 1. = vertical, 2. = horizontal.

Following is a flow chart together with a statement listing

(Fortran 3800) of the computer program, and a sample output.
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1

ALAM -299.7925/ FREQ.

WAVE +6.283185307 / ALAN

ALAMZ - CMPLX (0.7071067812 ,
0.7071067812 / SORT(ALAM }

CALL DIST X
SETS UP DISTANCE
ARRAY X

CALL HEADING
PRINTS TERRAIN MODEL

PRINT FREQ., POL , HA

NUMBER OF
DISTANCES
>

ERROR PRINT

READ:
HA (SOURCE HEIGHT )
{JIEO. (FREQUENCY )
0L (POLARIZATION)

CALL TERRANE (X(T),H , HP, COND,
NO EPS, CONDR , EPSR )
YES YES °
NO

D X(I)+0.5¢Hx%2/X(I)
ETAR « CMPLX (EPSR - 17975 #
CONDR / FREQ. }
DELTAR < CSQRT (ETAR-1)

XP2+0.9% (X{1)+X (X))
XM2=0.5% (X (J)-X(K))

YES

F(I)=FEWH (H,X(T))

M>NG
V
X0+ XP2+AB(M) # XN2
CTMP = KERNL (X0) % GH(M)
PL=P1+CTMP & SQRT (X0)

P2=P2+(TMP % X0
P3<P3+CTMP % SQRT (X0)# %3

NG I X0~025%K(2) 5 (L*ABINTJ# ¥ 2
PO-PO+SQRT(X0)# KERNL (X0 )% GH (M)

PO=PO +CTMP

PL = PL ¥ XM2
P2 = P2 % XM2
P3=P3 % XN2

PO~ PO*/X{J)

SUM « SUM +PO+R4* PL+R8¥P2+RI2%P3
+F(2)%(RL¥P1+RS®P2+RYR P3)
+F(3)#(R2¥P1+RE#P2+RIO¥ P3)
+F(4)% (RIXP1+RTHP2 +R1I %P3)

Flow chart for computer program
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XP2-0.5% (X (J)+X(J-1))
XM2-0.5 % (X (J)-X(J-1D)

THETA = SIN"( /x{lll-)u)

CTHETA=COS (THETA)

[X0=XP2+AB(M) ¥ XN2
CTMP = KERNL (X0) % GH(N)
PO=PO+CTHP
P2-P2+CTMP % X0
P4=PA+CTMP & X0% ¥ 2

YES
W>NG
o
NO

TEMP = 1,-0.25% CTHETA #%2+( 1.+ AB(M))xx2
PO = PO % XM2 X0+ X(I)xTEMP
P2 < P2% XM CTMP = SQRT(X(I)-X0) % KERNL (X0)*GH (M)
PE-P%IXIg PO« PO+CTMP
P2= P2+CTMP ¥ TENP
# P4-P4+(TMP X TEMP* %2

SUM = SUM + F(J-2) % (RIS(J) % PO+R1B(J)%P2+R2i(J)%P4)
+F(J-1)% (RI4()) % PO+RIT(J)%P2+R20(J) % P4)
+F(J)*(RIB(I)*PO+RIG(IIRP2+RII()) % P4)

Me M+]

[Jeset PO~ PO ¥CTHETA ¥SQRT (X(I))

P2 = P2 kCTHETA #SQRT (X (T))* %3

P4 - P4 x CTHETA #SQRT (X(I))%#5

|

FAI)=F(I)~ALAMZ ¥ (SUM +F (I-2 )% (R15 (I }%PO
+RIB(T)#P2+R21(1)%P4) +F(L+1) X (R14(1)¥PO
+RIT(T)*P2+R20(1)%P4))) / {1+ ALAMZ %
(RI3(I)¥PO+RIG(I)¥P2+R19(L)¥P4})

AMP=-CABS (F(I))
| PHA= CANG(F(I))
TIME - (KLOCK (0)-T0)%0.001

LPRIII X(1),H,COND, EPS, AMP, PHA , TINE

Flow chart for computer program
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aNaNaXaXaKa!

1000

1010

1040

PROGRAM WAGNER

A PROGRAM TO COMPUTE HF GROUND WAVE ATTENUATION
IRREGULAR, INHOMOGENEOUS TERRAIN, REFERENCE:
TELECOMMUNICATIONS RESEARCH REPORT, No, 7 , 1970,

aaaaa

DIMENSION IPOL(2)

COMMON 70/ F(2000)9R13(2000)sR14(2000)*R15(2000)sR16(2000)
1 R17(2000)sR18(2000)sR19(2000)sR20(2000)sR21(2000)
COMMON /1/ HA

COMMON /27 DsHsHP

COMMON /37 DELTAR,WAVE

COMMON 74/ FREQ»sPOL

COMMON /5/ NGsAB(48)9sGH(48)

COMMON /67 NsX(2001) 1

TYPE DOUBLE DABsDGH

COMPLEX FEWHsFsALAMZ »SUMsDELTARSETAR

COMPLEX KERNL PO 9sP1sP2ysP3sP4sCTMP

IPOL(1)=8H VERTIC $ [IPOL(2)=8HHORIZONT

READ GAUSSIAN QUADRATURE ABCISSAS AND WEIGHTS

READ 1000s NG
FORMAT(110)
NR=(NG+1)/2

DO 1 L=1sNR
READ 1010s DABsDGH
FORMAT (2D33.25)
J=NG-L+1
AB(L)=DAB
AB(J)=—=AB(L)
GH(L)=DGH
GH(J)=GH(L)

CALL SUBROUTINE TO SET UP DISTANCE ARRAY X IN METERS
START WITH X(2)e X{1l)=0e HAS ALREADY BEEN SETe

THE DISTANCES DO NOT HAVE TO BE EQUALLY SPACEDe
SUBROUTINE DISTX SHOULD MAKE SURE N < 2000

X{1)=0e
F(1)=(1e904)
CALL DISTX

MAKE SURE THERE ARE AT LEAST 4 DISTANCES
IF (NeGEe4) GO TO 4
PRINT 1040
FORMAT (*QONUMBER OF DISTANCES 0 4%)
CALL EXIT

SQRTX2=SQRT(X(2))

SQRTX3=SQRT(X(3))

SQRTX4=SQRT(X(4))
D1=SQART(X(2)¥X(3)%*X(4))*(X(2)*¥(SQRTX4~SQRTX3)+X(3)*(SQRTX2-SARTX4)
1 +X(4)*(SQRTX3-SQRTX2))

R1=X(3)*X(4)*(SQRTX4~SQRTX3)/D1

R2=X(2)*X(4)*(SQRTX2~SQRTX4) /D1

R3=X(2)#X(3)*(SQRTX3~SQRTX2)/D1

R4=(X{2)* (SURTX4¥#3-SQRTX3%¥%#3)+X(3)*(SQARTX2%#3-SQRTX4%*¥*3)

1 +X{4)*(SQRTX3*%3-SQRTX2%%¥3)) /D1
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aNale

10

1
2

20
2000

22

R5=SQRT(X(3)%¥X(4))*(X(3)-X(4))/D1
R6=SQRTIX(2)¥X(4))*(X(4)=-X(2))/D1
R7=SQRT(X(2)%X{3))#(X(2)-X(3))/D1

R8=(SGRTX2* (SQRTX3#*3-SQRTX4%*%¥3)+SQRTX3* (SQRTX4%#*¥3-SQRTX2%%3)
1 +SQRTX4* (SQRTX2*#3-SQRTX3%%3))/D1
R9=SQRT(X(3)%X(4) ) * (SQRTX4-SQRTX3)/D1
R10=SQRT(X(2)#X(4))*(SQRTX2-SQRTX4)/D1
R11=SQRT(X(2)*X(3))*(SQRTX3-SQRTX2)/D1

R12=(SQRTX2¥ (X (4)=X(3))+SQRTX3%¥(X(2)=X{4) )+SQRTX4*(X(3)=X(2)))/D1
DO 10 M=5sN

M1l=M-1

M2=M=2

D2=(X(M2)=X (ML) )*(X(M)%¥%2=X(M)*(X(M1)+X{(M2))+X(M1)*X(M2))
R13(M)=X(M1)%#X(M2)*(X(M2)-X(M1))/D2
R14(M)=X(M)*¥X(M2)*{X(M)=X(M2))/D2
R15(M)=X(M)®X(M1)*(X(M1)=X(M))/D2
R16(M)=(X(M1)*%¥2=-X(M2)%*%2)/D2

R17(M)=(X(M2)%#%2~-X(M)*%2)/D2

R18(M)=(X(M)**¥2=X (M1)%*%2)/D2

R19(M)=(X(M2)-X(M1))/D2

R20(M)=(X(M)=X(M2))/D2

R21(M)=(X(M1)=X(M))/D2

READ SOURCE HEIGHTs FREQUENCYs AND POLARIZATION
coL DESCRIPTION
1-10 SOURCE HEIGHTs KM
1-20 FREQUENCYs MHZ
1-30 POLARIZATIONs 1o = VERTICALs 2« = HORIZONTAL

READ 2000+ HASFREQsPOL

FORMAT (3F10e4)

IF (EOF+60) 999s22

HA=HA*1.E3 .

KPOL=POL

ALAM=24997925E2/FREQ

WAVE=64283185307/ALAM

ALAMZ = ((0e70710678125047071067812)/SQRTF(ALAM)})
CALL HEADING

PRINT 2500s FREQsIPOL(KPOL) sHA

2500 FORMAT (#OFREQUENCY =%3F1042910XsA8s*AL POLARIZATION*,10Xs*ANTENNA

1 HEIGHT =%yF6e29% METERS*//
2 IXoXX¥14Xs%2% 510X s *¥CONDUCTIVITY* 33X 9 ¥DIELECTRIC* 515X 9*F (X)*4522X>
3 ¥TIMING*/8Xs*(M)%*512Xs*(M)¥512Xs*¥ (MHO/M)* 56X 9 ¥*CONSTANT* 58X s ¥*MAGH*
4 13X9s%ARG¥* 916X *¥(SEC) ¥)

TO=KLOCK(0)

LOOP ON DISTANCE

DO 100 I=1sN
CALL TERRANE (X(I)sHsHPsCONDSEPSsCONDRSEPSR)
IF (I+EQel) GO TO 75

D=X(I)+(H*%2) /(2 %X (1))

ETAR = CMPLX(EPSRy—17975+%CONDR/FREQ)

DELTAR = CSQRT(ETAR - 1)
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aNaNe!

33
35

38
40

45

50

IF(KPOL.,EQel) DELTAR = DELTAR/ETAR
FOI)=FEWH(HsX(I))
IF (IeLEe6) GO TO 75

J = 2 THROUGH 4

SUM=(0e90e)

DO 40 J=2s4
PO0=P1=P2=P3=(0e3s0e)

K=J=-1

XP2=0e5%(X(J)+X(K))
XM2=0e5%(X(J)=X(K))

DO 35 M=14NG
X0=XP2+AB(M) ¥xXM2
CTMP=KERNL (X0 ) *GH (M)
P1=P1+CTMP*SQRT (X0Q)
P2=P2+CTMP*X0
P3=P3+CTMP*SQRT (X0 ) **3

IF (KeNEel) GO TO 33
X0=0e25%X(J) ¥ (1 +AB(M) ) *%2
PO=PO+SQRT (X0 )*KERNL (X0 )*GH(M)

GO TO 35

PO=PO+CTMP

CONTINUE

P1=P1%XM2

P2=P2%XM2

P3=P3%#XM2

IF (KeNEel) GO TO 38

PO=PO*SQRT(X(J))

GO TO 40

PO=PO*XM2 .
SUM=SUM+PO+R4*P1+R8*P2+R12%#P3 +F(2)*(R1*P1+R5*P2+R9#*P3)
1 +F(3)*(R2%¥P1+R6%P2+R10%¥P3)4F (4 )% (R3%¥P1+R7%¥P2+R11%P3)

J = 5 THROUGH I-1

I1=1-1

DO 50 J=5s11

PO=P2=P4=(0e%0e)

XP2=0e5%(X(J)+X(J=1))

XM2=0e5%(X(J)=X(J=1))

DO 45 M=1sNG

X0=XP2+AB (M) ¥XM2

CTMP=KERNL (X0 ) *GH (M)

PO=PO0+CTMP

P2=P2+CTMP*X0

P4=P4+CTMP*XQ%*%*2

PO=PO*XM2

P2=P2%XM2

P4=P4%XM2

SUM=SUM+F (J=2)%(R15(J) *P0+R18(J)%P2+R21(J) *P4)

+F(J=1)*(R14(J)*PO+R17(J)*¥P2+R20(J)*P4)

2 +F(J)  *(R13(J)%PO+R16(J)*P2+R19(J)*P4)
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C J=1

THETA=ASINF(SQRT(X(I1)}/X(I)))
CTHETA=COSF(THETA)
PO=P2=P4=(0Qe50e¢)
DO 55 M=1,NG
TEMP=1e—0e25%CTHETA#%2% (1¢e+AB (M) ) %%2
X0=X(1)*TEMP
CTMP=SQRT(X(1)=X0)*KERNL (XQ) #¥GH (M)
PO=P0O+CTMP
P2=P2+CTMP*TEMP

55 P4=P4+CTMP*TEMP#*%2
PO=PO*CTHETA*SQRT(X(]))
P2=P2*¥CTHETA*SQRT(X(]) ) **3
P4=P4*CTHETA*SQRT(X(1))%*x%5

EQUATION (B-11)

oNeNe!

FOI)=(F{I)=ALAMZ* (SUM+F(I-2)%(R15(1)*P0O+R18(1)*P2+R21(1})%*P4)
1 +F(I1)*(R14(1)*PO+R17(1)*P2+R20( 1) %P4} ))/(1.+ALAMZ*(R13(I)*PO
2 +R16(1)*P2+R19(1)*P4))
75 AMP = CABSI(F(I))
PHA = CANG(F(I)) .
TIME=(KLOCK(0)-T0O)*0.001
PRINT 8000s X(I)sHsCONDIEPSsAMPsPHASTIME
8000 FORMAT (%*0%9F12429F18e99F1l4e69F13e49E18e89E16e89F1543)
100 CONTINUE
C
GO TO 20
999 CALL EXIT
END
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SUBROUTINE DISTX

READ DISTANCES IN KM AND CONVERTS THEM TO METERS
(A DISTANCE OF ZERO SIGNALS END OF DISTANCE DECK)
COMMON 76/ N»X(2001)s1

IN THIS SUBROUTINE THE USER MUST FILL
THE X(I) ARRAY WITH N VARIABLES.

RETURN

END
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SUBROUTINE DISTX
COMPUTES EQUALLY SPACED DISTANCES
COMMON /767 NsX(2001) 1
INPUT
DMIN -—= FIRST DISTANCE IN KM
DMAX =—= MAXIMUM DISTANCE IN KM
DINC =- INCREMENT ON DISTANCE IN KM

READ 1000» DMINsDMAXsDINC
1000 FORMAT (3F10e2)
IF (DMINsEQeOe) DMIN=DMIN+DINC
N=(DMAX~DMIN) /DINC+2
DO 10 I=2»N
X(I)=(DMIN+(I-2)%DINC)*14E3
10 CONTINUE
RETURN
END

Note, this is an example of subroutine DISTX.
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SUBROUTINE DISTX
READ DISTANCES IN KM AND CONVERTS THEM TO METERS
(A DISTANCE OF ZERO SIGNALS END OF DISTANCE DECK)
COMMON /67 NsX(2001)1
DO 2 1=2,2001
READ 1020, XI(I)
1020 FORMAT (F10e5)
IF (X(I)eEQeDe) GO TO 3
X(I)=X(I)*1eE+3 -
2 CONTINUE
PRINT 1030
1030 FORMAT (*oNUMBER OF DISTANCES EXCEEDS DIMENSTON*)
CALL EXIT
3 N=[~1
END

Note, this is an example of subroutine DISTX.



FUNCTION KERNL(X0)

C

C SUBROUTINE OF WAGNER. COMPUTES
C KERNEL OF INTEGRAL EQUATION,., SEE
C EQ. (A-13).

C

COMMON 71/ HA

COMMON 72/ DsHsHP

COMMON 73/ DELTARsWAVE

COMMON 74/ FREQsPOL

COMMON 75/ NGsAB(48)sGH(48)

COMMON 76/ NXsX(2001) 1

COMPLEX KERNL sFEWHsDELTASDELTARSETA

CALL TERRANE (X0 9sHOsHPOsCONDSEPSsCONDRSEPSR)
ETA=CMPLX(EPSs—=17975.%COND/FREQ)

DELTA=CSQRT(ETA-1,)

IF(POLeEQele) DELTA=DELTA/ETA

XMS=X(1)-X0

HD=H~HO

R1=SQRT(XO**2+HA*%2)

RW = WAVEX(X0O + ((HO*%#2)/(2,%X0)) + XMS + ((HD*¥2)/(2,%XMS)) - D)
KERNL=CMPLX(COSF(RW) s»=SINF(RW))*¥SQRT(X(I)/(R1%XMS))*((HPO+DELTA

1 ~DELTAR)*FEWH(HDsXMS) — (HD/XMS))
C
C THE FACTOR (DELTA-DELTAR) ARISES IN
C MIXED-PATH PROBLEMS.
C
RETURN
END

~48=



)

aaaaoaaaaoaaaaaaa naoaaaQ

A aaaoaaaaaaan

SUBROUTINE TERRANE (XsHsHP sCONDSEPS»CONDREPSR)
SUBROUTINE FOR WAGNERe. DEFINES TERRAIN, PROFILE AND

GROUND CONSTANTS,
INPUT IS DISTANCE X IN METERS,
OUTPUT IS TERRAIN HEIGHT, H, SLOPE, HP,
GROUND CONSITANTS, CONDR, EPSR, COND, EPS.
IN MIXED PATH CALCULATIONS, CONOR AND EPSR

ARE RELATIVE VALUESFOR ¢ AND ¢ .
THEY ARE USED TO COMPUTE

DELTAR IN PROGRAM WAGNER.

IN FUNCTION KERNL THE DIF FERENCE
(DELTA-DELTAR) IS

COMPUTED. THIS DIFFERENCE TAKES INTO
ACCOUNT CHANGES

IN ¢ AND ¢, WITH DISTANCE,

CONDR AND EPSR ARE USUALLY

TAKEN TO BE THE VALUES OF

o AND ¢, FOR THE FIRST

SECTION OF PATH.

IN THIS SUBROUTINE THE USER MUST DEFINE THE FOLLOWING
VARIABLES

H =

HP =

CONDR =

EPSR =

COND =

EPS =

PRINT HEADING
ENTRY HEADING

PRINT 509+A

50 FORMAT (*A SMOOTH SPHERE WITH RADIUS*9E1243)
RETURN
END
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SUBROUTINE TERRANE (XsHsHP sCONDsEPS»CONDRIEPSR)
SUBROUT INE FOR WAGNER. DEFINES TERRAIN.

SMOOTH SPHERE

COMMON /17 HA

DATA (A=8.5E6)

COMPUTE HEIGHT »SLOPEsCONDUCTIVITY AND DIELECTRIC CONSTANT AT X
HP==X/A
H=o 5% X¥HP~ HA
CONDR = .01

EPSR = 10.
COND = 01
EPS = 10.
RETURN

PRINT HEADING
ENTRY HEADING
PRINT 509+A
FORMAT (*A SMOOTH SPHERE WITH RADIUS*,E12.3)
RETURN
END

Note, this is an example of subroutine TERRANE,
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SUBROUTINE TERRANE (XsHsHPsCONDSEPSsCONDRSEPSR)
SUBROUTINE FOR WAGNERe DEFINES TERRAIN.
TABLE MOUNTAIN PATH WITH KBOL AS TRANSMITTER
COMMON /1/ HA

COMPUTE HEIGHTsSLOPE sCONDUCTIVITY AND DIELECTRIC CONSTANT AT X
H = 50e*TANHF ((X~5000¢)/100¢)+50e~HA
HP=0e5% (1e—{ TANHF ( (X=5000¢)/1004) ) #%2)
CONDR = .01
EPSR = 10.

>

FOUR SECTION PATH
X1 2857440

X2 35000.

X3 450000
IF(XeGTeX1eANDeXelLEeX2) GO TO 20
IF(XeGTeX2eANDeXeLEeX3) GO TO 30
IF(XeGTeX3) GO TO 40

nnn

COND = «01
EPS = 10
GO TO 10
20 COND = 2,0
EPS = .81
GO TO 10
30 COND = 01
EPS = 10
GO TO 190
40 COND = 2,0
EPS = 81.0
10 CONTINUE
RETURN

PRINT HEADING
ENTRY HEADING
PRINT 50
50 FORMAT(*TABLE MOUTAIN PATH WITH KBOL AS TRANSMITTER#*)
RETURN
END

Note, this is an example of subroutine TERRANE,
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COMPLEX FUNCTION FEWH(HD»s»XD)

THE ATTENUATION FUNCTION,

EQ (A-13), OF TELECOMMUNICATIONS RESEARCH
REPORT No, 7 , 1970, INPUT IS THE

HEIGHT HD AND THE DISTANCE

XD.

COMMON /3/ DELTARsWAVE
COMPLEX FEWHSTEMPsQsZsZ2sZZsHWERF sWERFZsWERF » ZWERF sDELTAR
TEMP=(0+70710678125-047071067812) #SQRT ( « 5*WAVE)
XD2=SQRT(XD)
Q=-TEMP*HD/XD2
Z=TEMP*DELTAR*XD2 + Q
22=-2
ZI=AIMAG(ZZ)
IF (Z1eLTeO0sORe(ABSIREAL(ZZ))eLTe6eeANDeZIoLToabe}) GO TO 10
22=22%%2
HWERF=(Z22-24)/(22Z%(22-345))
GO TO 12
WERFZ=WERF(2Z)
HWERF=ZZ~0¢5*WERFZ/ (ZZ*WERFZ+(0e5-0456418958) )
ZWERF=2+HWERF
FEWH= (Q*ZWERF=045)/ (Z*ZWERF=045)
RETURN
END



COMPLEX FUNCTION WERF(222)

aaaaoaan

THE FUNCTION w(z),
ABRAMOWITZ AND STEGUN, 1964)

DR. R. H, OTT

COMPLEX Z922Z9ZV sV 9Z29CrsWeS

DIMENSION C(12)sW(594)

EQUIVALENCE (SsC(12})

DATA (C(1) = (e09—e5641895835))

DATA (((W(IsJ)sI=195)9J=194)=(1les2e0)>

KRN HIIHXXKINXXXXNXXX XXX

(36678794411 714423E~0196¢071577058413937E-01)»
(1831563888873418E-0293400262170660662E-01)»
(1e6234098040866788E-0492¢011573170376004E-01)>
(16125351747192646E-0791459535899001528E-01) >
(40275835761558070E-0150000000000000000E+00) »
(3e047442052569126E-01+2.082189382028316E~01)»
(1¢4023958136627T79E-0192222134401798991E-01)>
(6e53177772890469TE-0291739183154163490E-01)»
(36¢628145648998864E-0291358389510006551E-01)»
(2¢553956763105058E~010000000000000000E+00) »
(2184926152748907E-01+94299780939260186E-02)
(1e479527595120158E-0191311797170842178E-01) >
(9¢271076642644332E-0291283169622282615E~01)>»
(56968692961044590E-0291¢132100561244882E~01)»
(14790011511813930E~015s0000000000000000E+00) »
(le642611363929861E-01950019713513524966E-02)»
(1e307574696698522E-0198+111265047745472E-02)»
(9¢640250558304439E-0299123632600421258E-02)»
(66979096164964T50E-02984934000024036461E-02))

XX=REAL(ZZZ)

YY=AIMAG(ZZZ)

X=ABSF (XX)

Y=ABSF (YY)

Z=CMPLX(XsY)

LZ2=0

IF{XeGEe4e5¢0ReYeGEe3e5) GO TO 100

C
C
C

CONVERGING SERIES
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10

11
20

30
200

lo0

S

I=X+e5

J=Y+e5
V=CMPLX(FLOATF (1) sFLOAT(J))
IV=2-V

C(2)=W(I+1sJ+1)

AlI=0.

DO 10 1=3s12

Al=Al~¢5
C(I)=(VXC(I-1)+C(I=-2)) /Al
CONTINUE

J=12

DO 11 I=2,11

J=J~1

S=SHZV+C(J)
IF(YYeGEeQe) GO TO 30
IF(eNOTSLZ2) Z22=2%Z
S=2«*CEXP(-22)-5
IF(XXeGTa0e) S=CONJG(S)
GO T0 200

IF(XXelLTeOs) S=CONJGI(S)
WERF=S

RETURN

LZ22=1

L2=7%2

C
C ASYMPTOTIC SERIES
C

= Z*#((0e9004613135279)/(22 - 041901635092) + (Oes0

¢09999216168) /

X(Z2 - 1,7844927485) + (0e9040028838938748)/(22 -~ 5,5
5o T0 20 ¢52534374379))

END
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Input data for the case of a smooth cylindrical earth:

Card #1: 5 (Column 5)

Card #2: 0.9061798459 0.2369268851
Card #3: 0. 5384693101 0.4786286704
Card #4: 0.0000000000 0.56888888888
Card #5 ’

through 62: 1.0, 2.0, ......., 53.

Card #63: 0.0 (column 8) 1.0 {column 18) 1.0 (column 28)

Following is the output from this example.
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A SMOOTH SPHERE WITH RADIUS

FREQUENCY =

X
(M)

0.00
1000.00
2000.00
3000.00
400C.00
5000.00
6000.00
7000.00
8000.00
9000.00

10000.00
11006.00
12000400
13000.00
14006.60
15000.00
16000400
17000.00
18030.40
19600.00
20000.00
21003.40
22G0C.U0
2300C.00
24000.00

25000, 00

1.00

4
(M)

0.000000009
~0.058823529
~0.235294118
-0.529411765
~0.941176471
-1.470588235
-2.117647059
=2.332352941
=3.754705882
~4.754705882
-5.832352941
-7.117647059
-8.470588235
=3.941176471

~11.529411765
-13.235294118
-15.038823529
-17.,000000000
-19.,0588235320
-21.2352941138
=234529411765
=25494117€4790
~28. 470588235
-21.117647058
=33.832352941

-36.754705882

8.500+006

VERTICAL POLARIZATION

CONDUCTIVITY

(MHC/M)

0.019000
0.010000
0.010000
0.010000
0.010000
6.010300
8.010000
0.010000
0.010000
0.010000
0.510000
0.010000

0.010200
0.010000
0.016300
0.010000
0.610000
0.010000
0.010000
0.010000
0.010000
0.€10000
0.010009
0.010000

0,010003

-50=

DIELECTRIC
CONSTANT

10.0000
10,0000
10.0000
10.0000
10.0000
10.00800
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10,0000
10,0000
10.0000
10.0000
10.0000
10.0000
10,0000
10,0000
10,0000

10.0000

ANTENNA HEIGHT =

F(x)

MAG
1.00000000+000
3.62785706~001
9.34032461-001
9.07383363-001
8.81991252-001
8.57643738-001
8.34825345-001
8.12513417-001
7.90993050-001
7.70208750-001
7.50115518-001
7.30675486-001
7.11855902-001
6.93627838-001
6.75965320-001
6.58844727-001
6.42244356-001
6.26144100-001
6.10525209-001
5.95370101-001
$.80662214-001
5.66385892~001
5.52526281-001
5.39069260-001
5.26001367-001

5.13309747-001

ARG

0.00000009+06G0
-4.,24608707-001
-5.97768976-001
-7.28975441-001
-3.38214925-001
~9433250508-001
-1.022549334+4000
-1.10098530+000
=1.17332944+000

-1.24066203+000

-1.30377135+000

~1.36325394+000
-1.41957439+000
-1.47310306+000
~1.52414101+000
~1.57293697+000
-1.61969937+000
-1.664604938+000
-1.70780530+4000
-1.74943145+000
-1.78953780+4000
~1.82840489+000
-1.86594171+4000
-1.90228748+000
=1.93751312+4000

-1.97168246+000

0.00 METERS

TIMING
(SEC)

0,000
0.007
0.033

0.045

1.838
2.310
2.819
3.358

3.942

5.913
6.649
7.423
8.231
9,034
9.982
10.907
11.809

12.874




26000..0
¢7000.00
28000.00
23000.30
3000C.30
31000.00
32000.00
33000.00
3#000.00
35000.00
36000400
37000.00
38000.900
39000.00
40000.900
41000.00
42000.00
43000.00
44000.00
45000.00
46000.00
47000.50
48000.00
43000.00
50000.00
51000.00
52000.00
53000.00
54006.00
55000.00
56000.00
57000.00

58000.00

=39e 470882
~42.3323529L2
-46.117647058
-“49.,470588235
=52494117€470
-56.529411764
-60.235294118
~64.058823530
-68.330000000
-72.058823530
-764235294119
-80.529411763
=84.941176470
-89.470588237
~94. 117647059
-C8.882352941
-103.764705881
~108.76470G5881
-113.882352941
-119.117647059
~124.470588233
-129.941176470
~135.529411763
~141.235294119
-147.058823530
-153.0600000000
-159.058823530
-165.235294115
~171.529411767
=177.941176470
-1844470588233
-191.117647056

-137.832352941

U eUl vy
0.010000
0.015000
0.010G000
0.310300
0.0100039
2.010000
0.010000
0.010000
0.,010000
0.010000
0.010000
0.010000
0.010000
0.0100090
0.C10000
0.010000
0.010000
0.010000
0.010000
0.014000
0.C10000
7.010000
6.010000
d.010000
0.0100060
0.610000
0.010000
0.G10000
0.G10000
0.G18000
0.010900

0.010000

1U.0LuUd0
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10,0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000

=57~ 10.0000

D eJUYBClYLl=-UUL
4.89006649-001
4.77372092-001
4.66067577-001
4.55082679-001
Lo44407365-001
4.34031984-001
4.23947239-001
4e14144178-001
4.04614181-001
3.35348947-001
3.86340488-001
3.77579473-001
3.69000501-001
3.60775578-001
3.52717656-001
3.44879922-001
3.37255794~001
3.29838903-001
3.22623091-001
3.15602335-001
3¢08771045-001
3.02123453-001
2495654207-001
2.89358067-001
2.83229953~-001
2.77264947-001
2471458281-001
2.65805333-001
2.60301624-001
2.54942815-001
2.49724697-001

2.44643190-001

=ZeUUKBLICSTU LY
-2.03707782+000
~2.06840402+000
-2.05887556+000
~2412853262+000
-2.15741220+000
~2.18554855+000
=2421297341+000
~2023971633+000
~2.26580489+000
~2.29126493+000
=2.31612073+000
-2.34038399+000
~2.36409375+000
-2.38726194+000
=2.40990741+000
-2.43204799+000
-2.45370059+000
-2.47488123+4000
~2.49560513+0G0
~2.51588681+000
~2.53574010+000
=2455517817+000
=2.57421367+000
=2+59285867+000
-2.61112474+000
-2.62902301+000
~2.64656414+000
-2.66375842+000
~2.68061575+000
-2.69714566+000
~2471335735+000

=2472925972+000

L1oe9cCu

15.002

16.113

17.270

18.462

19.696

20.371

22.274

23.624

25.009

26.429

27.8931

29.339

30.941

32.518

344150

35.803

37.498

39.216

40,390

42.806

L4655

464549

48.476

50.431

52.4bkb

54.481

564555

58.664

60.818

63.016

65.245

67.516
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