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CROSSTALK BETWEEN NICROSTRIP TRANSMISSION LINES 

David A.  Hill, Kenneth H. Cavcey, and Robert T. Johnk 

Electromagnetic Fields Division 
National Institute of Standards and Technology 

Boulder, CO 80303 

Methods for prediction of crosstalk between microst~ip 
transmission lines are reviewed and simplified for the weak 
coupling case. Classical coupled transmission line theory is 
used for uniform lines, and potential and induced EMF methods 
are used for crosstalk between nonuniform lines. It is shown 
that the potential method is equivalent to classical coupled 
transmission line theory for the case of uniform lines. An 
experiment was performed for uniform coupled microstrip lines 
for frequencies from 50 MHz to 5 GHz, and good agreement between 
theory and measurement was obtained for both near-end and far- 
end crosstalk. 

Key words: characteristic impedance; crosstalk; effective 
permittivity; even mode; microstrip; mutual capacitance; mutual 
inductance; odd mode; scalar potential; transmission line; 
vector potential. 

1. INTRODUCTION 

In dense circuits, electromagnetic coupling (crosstalk) between closely 

spaced signal lines limits interconnect performance [I] and becomes an 

important aspect of circuit design [2]. The general crosstalk problem 

involves multiple lines and complex geometries and is very complicated to 

analyze. In this report we analyze crosstalk between a pair of microstrip 

lines located on a single grounded substrate. This geometry is simple 

enough to permit analysis, but still illustrates most of the important 

features of the crosstalk issues. 

The organization of this report is as follows. Section 2 starts with a 

review of uniform transmission line theory for a pair of coupled lines and 

goes on to obtain simple expressions for near-end and far-end crosstalk [ 3 ] .  

Section 3 covers two perturbation methods [4,5] that are 'valid for arbitrary 

line orientations, but require that the coupling be weak (multiple 

interactions are neglected). Section 4 presents a comparison of measured 



and calculated results for the S parameters over a broad frequency range for 

a pair of uniform microstrip lines. Section 5 contains conclusions and 

recommendations for further study. Appendix A demonstrates the equivalence 

of the potential method in Section 3.1 and transmission line theory in 

Section 2 for the case of uniform, weakly coupled lines. Appendix B 

contains a derivation of the transmission line parameters for the simple 

example of circular wires above a ground plane. Appendix C discusses length 

and frequency scaling of lossless and lossy transmission lines. 

2. UNIFORM TRANSMISSION LINE THEORY 

2.1 Coupled Line Equations 

The literature on crosstalk between transmission lines dates back at 

least to the 1930s [ 6 ] ,  and textbooks have been written on multiconductor 

transmission lines [7,8]. Strictly speaking, classical transmission line 

theory applies only to perfectly conducting lines in a homogeneous medium so 

that the transmission line modes are transverse electromagnetic (TEM). 

Microstrip lines do not support pure TEN modes, but at low frequencies they 

support quasi-TEM modes [9] that approximately satisfy the transmission line 

equations. 

A cross-sectional view of a pair of microstrip lines on a grounded 

substrate is shown in figure 1, For simplicity, we assume that the two 

strips have equal width w, zero thickness, and perfectly conductivity. (We 

will conunent on the effects of conductor losses later.) The ground plane is 

also assumed to be perfectly conducting. The lines are located on a 

dielectric slab (substrate) of thickness h and have a separation s. The 

substrate has relative permittivity rr and free-space permeability po. The 

region above the substrate is free space. 

The multiconductor transmission line equations can be compactly written 

in matrix form [lo], but for discussion we choose to write out the coupled 

differential equations. For the source-free case, the line currents, II and 

12, and voltages, V and V2, satisfy (31 1 



where x is the longitudinal coordinate and the exp(jwt) time dependence is 

suppressed. The C are the elements of the distributed capacitance matrix, 
ij 

and the Lij 
are the elements of the distributed inductance matrix [Ill. 

Both the capacitance and inductance matrices are symmetric (C - C21 and 12 

L12 = Lpl). Because of the microstrip symmetry, we also have Cll- C22 and 

Lll - L22. We have put the off-diagonal terms on the right sides of the 

equations because they will be thought of as source terms for loosely 

coupled lines in Section 3. 

For perfect conductors in a homogeneous dielectric, the capacitance and 

inductance matrices are frequency independent. When the dielectric region 

is inhomogeneous (as for insulated wires [ll] or microstrips [12]), then the 

capacitance and inductance matrices depend on frequency. However, they are 

approximately frequency independent over a large quasi-static frequency 

range [13]. 

The symmetric microstrip supports an even mode with V1 - V2 and an odd 
mode with V1 - -V2. The even and odd mode propagation constants: rev and 

are given by [3] 

and 



The even and odd mode characteristic impedances, Z and Zodd, are given by ev 

13 I 

and 

Equations (2) and (3) are deceptively simple because computation of the Lij 

and C elements generally requires some numerical method, such as the 
ij 

method of moments [12]. 

For large spacing (s/w >> I), the coupling capacitance C12 and 

inductance 
L12 

become small. In this case, the propagation constants in eq 

(2) approach that of an isolated line 7 0 : 

Also, the characteristic impedances in eq (3) approach that of an isolated 

line ZO : 

2.2 Crosstalk Predictions 

To study crosstalk, we consider the geometry in figure 2. The coupled 

microstrip lines are identical to those in figure 1 except that they are of 

finite length 1 .  Line 1 is fed with a voltage generator V at x -. 0, and 0 



all four ports are terminated with an impedance Z We label the driven and 0 ' 

terminated ends of line 1 as ports 1 and 2, and the near and far ends of 

line 2 as ports 3 and 4. The geometry in figure 2 has been analyzed for 

both directional coupler applications 1131 and crosstalk predictions [ 3 ] .  

For crosstalk prediction, we can assume that the lines are loosely 

coupled (s is not too small compared to h and w). In this case, we can use 

the approximate solution of [3] and equate near-end and far-end crosstalk to 

the S parameters as follows: 

In terms of the microstrip parameters, S31 is approximately [ 3 ]  

where 

and 

Similarly, S41 is approximately 

(Reference [3] has the correct exact expression for S but has an error in 41 ' 
the weak coupling approximation for S and does not agree with eq (lo).) 41 

The transmission S parameter S21 is not needed for crosstalk 

prediction, but is approximately [ 3 ]  



-7*J 

S21 - cos (6kl) . 

To first order in 62, the reflection coefficient S - 0 .  To first order in 11 

62, the approximate S parameters satisfy conservation of power: 

2.3 Low-Frequency Approximations 

At sufficiently low frequencies (or for sufficiently short lines), we 

can assume that lyOlel << 1. In that case the scattering parameters of the 

previous section reduce to 

6z70J 
sg1 = -, 

zo 
and 

S4, = -jSkR. 

To simplify the crosstalk parameters even further, we write the three 

propagation constant? in terms of effective dielectric constants: 

and 

'odd jo'odd 



where c is the velocity of light in free space. The relative effective 

dielectric constant [9,13] for an isolated strip is c 
eff' and the relative 

effective dielectric constants for the even and odd modes [13] are E and 
ev 

E odd' substituting eq (14) into eq (13), we obtain 

e1/*R6z 
Sgl = j w  

eff 
cz 
0 

and 

112 - el/2)l 
S41 = - j w  

('ev odd 
2c 

Since e E e eff' ev' odds and Z are frequency independent for low frequencies, 0 

S31 and SL1 are proportional to j o  at low frequencies. Paul and Everett 

[14] have shown this for the same geometry, and they showed experimentally 

that the resultant crosstalk waveforms are proportional to the time 

derivative of the excitation waveform (when the spectrum of the excitation 

is sufficiently band limited). Equations (15a) and (15b) also show that the 

crosstalk is proportional to line length R for short lines. 

3. METHODS FOR NONUNIFORM GEOMETRIES 

The general crosstalk application will involve many lines and 

nonuniform geometries. For simplicity we consider only two lines on a 

single substrate, but allow the two lines to have arbitrary orientation. 

The two methods that we consider can be extended to multiple lines and 

multiple substrates. 

3.1 Scalar and Vector Potentials 

In this section, we follow the method of Howard and Dunn 14,151 for 

weakly coupled microstrip lines. Consider two lines of arbitrary length and 



orientation located on the same substrate as in figure 3 .  The lines do not 

have to be straight, but here we assume that they are. 

We first consider line 1, the driven line, in the absence of line 2. 

The current I and charge p are approximated as a line current and a line 1 1 

charge located at the center of the strip. The local coordinate ( 
1 

specifies the location on line 1. The charge and current on line 1 produce 

a voltage V(x,y) and a vector potential k(x,y) at an arbitrary point (x,y) 

at the surface of the substrate ( z  = h): 

and 

V(x,y) = I ge(r1;x,y) dC1 
line 1 

A 

line 1 

A 

The unit vector is in the direction of line 1. If the line is not 

A 

straight, then c1 is a function of position along the line. The functions 

ge and gm are Green's functions for a grounded substrate geometry that are 

defined and discussed in [16] and [17]. The simpler case of a ground plane 

geometry (no substrate) is discussed in Appendix B. 

We now consider line 2 (the undriven line). The scalar potential V and 

vector potential A act as sources that excite line 2. The derivation of the 

source terms resulting from V and A is given in [15] , and the resultant 
transmission line equations for the voltage V and the current I on line 2 2 2 

are 

and 



A is the component of the vector potential in the direction of line 2: 

A = Equations (17a) and (17b) are similar to eqs (lc) and (Id) except 
2 ' 

that the source terms on the right side are different. In Appendix A, we 

show that the two sets of equations are equivalent for the case of parallel, 

uniform lines. Paul's results for illumination of transmission lines by 

arbitrary external fields [lo] can be shown to be equivalent to eqs (17a) 

and (17b) if we recognize that V and A are equal to integrals from the 

ground plane to the microstrip (0 to h) of the appropriate components of the 

electric and magnetic fields [lo]. 

Equations (17a) and (17b) can be solved for I2 and V using standard 2 

methods [IS]. Since the effect of line 2 on line 1 has been neglected, the 

solution for I2 and V2 can be considered a first-order perturbation 

solution that is valid for weak coupling. To check the validity of the 

method, one could allow the first order currents and charges on line 2 to 

excite line 1 and determine what spacing or geometry produces a negligible 

change in the currents and charges on line 1. 

3.2 Induced EMF Method 

Consider again the geometry in figure 3 where line 1 is the driven 

line, and its current and charge produce scalar and vector potentials as 

given by eqs (16a) and (16b). We can derive the electric field @ produced 
by line 1 from [18]: 

Now consider line 2 in the absence of line 1. If we excite line 2 with 

a voltage source at r;, we can use standard transmission line theory to 

determine the current distribution 12(r2). We now apply the induced EMF 

method which has been so widely used in antenna analysis [19] to the 



illumination of line 2 by the electric field given by eq (18). The open 

circuit voltage V (r') is written as the following integral over line 2: 20c 2 

5 (r2) a 

~ ~ ~ ~ ( r ; )  - I k(r2)sr2 dl2. 
line 2 12(<;) 

(To be complete, the integral should also extend over the terminations 

between the ground plane and the microstrip.) Olsen [5] has used the result 

in eq (19) to compute crosstalk between lossy transmission lines where the 

loss effect [20] has been included in both line 1 and line 2 by using the 

appropriate current distributions, I (c ) and 12(r2), for lossy lines. The 
1 1  

open circuit location I '  can be chosen anywhere on line 2, but is normally 2 

chosen to be at either end since the end points are of most interest. 

Expressions of the form in eq (19) have appeared in other analyses of 

illumination of transmission lines by external fields [21,22], and Paul's 

analysis [lo] shows that the potential formulation in eqs (17a) and (17b) is 

equivalent to the induced EMF formulation in eq (19). 

We again point out that the result in eq (19) is a first-order 

perturbation result that neglects any multiple interaction between the lines 

and that the line-current approximation is made on both lines. Yuan and 

Nyquist [23] have used a full-wave perturbation theory to analyze microstrip 

crosstalk where they have not made the line-current approximation. 

4 .  MEASURED CROSSTALK 

For crosstalk measurements, we prepared a circuit board with two 

parallel, uniform microstrip lines as in figure 2. The dielectric substrate 

was duroid with relative pernittivity rr - 2.2 and thickness h - 1.55 nm. 
The strip width w was chosen to be 4.8 mm, and this value yields-a 

characteristic impedance of 50 0 for a single, isolated line in the quasi- 

static frequency range [13]. The strip separation w was chosen equal to the 

strip width 4.8 mm in order to push the limit of the weak-coupling theory. 



The line length Q was chosen to be 19.6 cm, so the lines range from 

electrically short at the lowest measurement frequency (50 MHz) to 

electrically long at the highest measurement frequency (5 GHz). 

Even though oyr primary interest was in smaller, shorter monolithic 

microwave integrated circuit (MMIC) lines, the larger dimensions of our 

circuit board made it easier to perform measurements of S parameters using 

an automatic network analyzer. (The subject of scaling the measurements to 

smaller lines at higher frequencies is discussed in Appendix C.) We 

soldered coaxial, 50-0 connectors to each of the four ports as shown in the 

photograph in figure 4. In measuring the near-end (S31) or far-end (S ) 4 1 

crosstalk, we terminated the other two ports (ports 2 and 4 or 2 and 3) in 

50-0 loads. 

For comparison with the measured crosstalk data, we used the weak- 

coupling, uniform-line theory for Sjl in eq (7) and S41 in eq (10). These 

theories require values for the even and odd mode characteristic impedances 

(Zev and Zodd) and the effective dielectric constant for the even and odd 

modes and the isolated strip (eeV, E odd ' and E eff) ' Accurate quasi-static 

formulas for these quantities have been published in [13] and [24], and we 

used these formulas to compute the following values: Zev = 51.64 0, Zodd = 

48.36 a ,  rev - 1.973, cOdd - 1.797, and eeff - 1.881. The formulas used to 

obtain these values were checked for accuracy by comparison with published 

curves obtained by numerical methods [13]. As expected, r is greater than 
ev 

r because the even mode field is more confined to the substrate. odd 

Comparisons of measured and theoretical crosstalk magnitudes are shown 

in figures 5 and 6 for frequencies from 50 MHz to 5 GHz in 50 MHz steps. 

The near-end crosstalk S in figure 5 is characterized by oscillations as 3 1 

predicted by eq (7). The low-frequency theory given by eq (15a) is also 

shown and is valid for frequencies below about 100 MHz. This theory has the 

j w  dependence that was discussed by Paul and Everett (141. The agreement 

with the more general theory is generally good (within 2 dB) for frequencies 

below 3 GHz. At higher frequencies, the lack of agreement could be due to 

dispersion, surface waves, or higher-order modes that are not taken into 



account in the theory. Connector-to-connector crosstalk might also be a 

factor above 3 GHz because of the close spacing of the connectors as shown 

in figure 4. However, these frequencies are above the normal frequency 

range of use for microstrip lines of these dimensions [13]. The agreement 

that we have achieved is more than adequate for the application of crosstalk 

estimation where high accuracy is not required. 

The far-end crosstalk (S41) in figure 6 does not exhibit oscillations 

because the argument of the sine function in eq (10) never gets large enough 

to cause oscillations. (It could for longer lines or higher frequencies.) 

We see some minor oscillations in the measured data above 2.5 GHz, but the 

agreement remains within 2 dB. We did not include the low-frequency theory 

of eq (15b), but it is essentially identical to the more general theory of 

eq (10) over the entire frequency range. Both theories show the j w  

dependence discussed by Paul and Everett [14]. 

Comparisons of measured and theoretical crosstalk phase are shown in 

figures 7 and 8. The phase of S31 in figure 7 approaches 90" at low 

frequencies because of the j w  dependence in eq (15a). At higher 

frequencies, the phase contains 180" jumps where the amplitude in figure 5 

exhibits nulls. Above 3 GHz, the theory and measurement are no longer in 

agreement. The agreement is qualitatively good below 3 GHz, but the 

measured phase has an extra retardation, probably because of the phase shift 

associated with the connectors. The connector phase shift could be 

calibrated out, but we chose not to do so. For crosstalk applications, the 

amplitude results (which do not appear to be affected by the connectors) are 

much more important than the phase. The extra connector phase shift (which 

appears to be proportional to w )  would result in a pure time delay in the 

time domain. 

The phase of Shl in figure 8 approaches -90" at low frequencies because 

of the factor -j in eq (1Sb). The exp(-yO1) factor in eq (10) yields a 

linear phase shift, and the 360" jumps occur only to keep the phase in the 

range from -180" to 180". Again the measured phase has an extra phase shift 

due to the connectors. 



We also measured the through parameter S and it agreed well with eq 21 ' 
(11). We measured S to check the matching of the connectors to microstrip 

11 

lines, and it remained below -30 dB for frequencies below 1 GHz and below 

-20 dB above 1 GHz. To estimate the connector-to-connector crosstalk, we 

soldered two connectors to the ground plane in the absence of microstrips 

and measured the coupling. It increased from -87 dB at 50 MHz to -37 dB at 

5 GHz. Consequently it could have been partly responsible for the deviation 

at the high frequencies in figure 5. 

5. CONCLUSIONS AND RECOMMENDATIONS 

We have reviewed theories for crosstalk between a pair of uniform or 

nonuniform microstrip transmission lines. We have concentrated on theories 

for weak coupling because that is the usual case of interest in crosstalk 

applications. For uniform lines, we have simplified the theory to easily 

computed formulas for near-end and far-end crosstalk and have also showed 

that both types of crosstalk have a simple j w  dependence at low frequencies. 

We have also performed crosstalk measurements and have shown good agreement 

between theory and measurements for frequencies from 5O'MHz to 5 GHz. These 

measurements were made on a fairly large circuit board (length = 20 cm) 

which can be considered a scale model for smaller MMIC lines. Scale model 

issues are discussed in Appendix C. 

Theories for nonuniform, coupled lines have also been reviewed. These 

theories are quite flexible and do not rely on the usual mutual capacitance 

and inductance parameters that are used in uniform, multiconductor 

transmission line theory. However, we have shown that the scalar and vector 

potential theory discussed in Section 3.1 is equivalent to coupled 

transmission line theory for the special case of uniform lines. This was 

done in Appendix A by demonstrating equivalence of scalar potential coupling 

to mutual capacitance and the equivalence of vector potential coupling to 

mutual inductance. This equivalence is important because it allowed us to 

show in Appendix B that local mutual capacitance and inductance coupling 



occur over a finite length of line that is approximately equal to twice the 

line separation. 

A number of extensions to this work would be worthwhile. Loss should 

be included in the theories because this is likely to be important in small 

MMIC lines and does not scale in a convenient way for scale model 

measurements, as discussed in Appendix C. More theoretical and experimental 

work should be done for complex geometries that include nonuniform lines and 

multiple dielectric layers. The potential and induced EMF methods discussed 

in Section 3 are useful for such cases, but their limitations need to be 

determined. Time-domain theory and measurements [25] should be pursued 

because of the importance of pulse crosstalk [14] in digital systems. Pulse 

issues could be studied directly in the time domain or by way of Fourier 

transforms of frequency-domain calculations and measurements. 
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APPENDIX A. EQUIVALENCE OF POTENTIAL AND TRANSMISSION LINE THEORIES 

The purpose of this appendix is to show the equivalence of the 

potential source terms on the right sides of eqs (17a) and (17b) to the 

coupled transmission line source terms on the right sides of eqs (lc) and 

(Id). The conditions that we require are that the two lines be parallel and 

only weakly coupled (separation s should not: be too small). 

We first consider the scalar potential term jwC 22V((2) on the right 

side of eq (17b). Using the expression for V in eq (16a), we can write the 

potential term as 



where we have suppressed the y dependence of ge. If we assume that: 
e 

decays rapidly as IS1 - r2[ increases, then we can factor out the charge 
from the integral in eq (Al) and approximate the integral over line 1 by an 

integral from -00 to 00%: 

The integral over rl is the potential on line 2 due to a constant unit 

charge per unit length on line 1. Frankel [8] defines this quantity as the 

element P21 
of the potential matrix [PI which is the inverse of the usual 

capacitance matrix. This allows us to write eq (A2) as 

Using the definition of the capacitance matrix [ a ] ,  we can write the 
charge p on line 1 as 1 

where we have used the fact that the coupling is weak ( IC12 ( is small 

compared to C ) Substituting eq (A4)  into eq (A3), we have 11 

From the inverse of the capacitance matrix, we can approximate P21 by 

-CI2/(C C ) if we again assume weak coupling (ci2 << CllC22). Then we can 11 22 

write eq (AS) in the desired final form: 



Equation (A6) confirms that the source terms on the right sides of eqs (Id) 

and (17b) are approximately equal and that the scalar potential source term 

is approximately to the mutual capacitance source term. The actual 

expression for the mutual capacitance is given in Appendix B for the example 

of circular wires above a ground plane. 

We now consider the vector potential term, -joA(f2), on the right side 

of eq (17a). Using the expression for A in eq (16b), we can write the 
vector potential term as 

-joA(C2) - -jo ,f I~(T~) gm(rl;r2) drip 
line 1 

where we have suppressed the y dependence of g We have also used the fact 
m ' 

A A 

that the two lines are parallel (rler2 - 1). If we assume that g also m 

decays rapidly as Itl - r21 increases, then we can factor out the current 
from the integral in eq (A7) and approximate the integral over line 1 by an 

integral from -a to a: 

The integral over 5- is the flux linkage with line 2 due to a constant unit 1 

current on line 1. This quantity is defined as the mutual inductance L21 

[8]. Using this definition, we can write eq (A8) in the desired final form: 

Equation (A9) confirms that the source terms on the right sides of eqs (lc) 

and (17a) are approximately equal and that the vector potential source term 

is approximately equal to the mutual inductance source term. The actual 

expression for the mutual inductance is given in Appendix B for the example 

of circular wires above a ground plane. 



APPENDIX B. TRANSMISSION LINE PARAMETERS FOR CIRCULAR WIRES 

In general, the microstrip geometry of figure 1 does not permit a 

closed-form analysis., and numerical techniques are required to obtain the 

transmission line parameters [12]. The difficulties are that the strips 

support an unknown current or charge distribution that must be computed 

numerically and that the dielectric substrate leads to fairly complicated 

Green's functions, ge and gm [17]. However, it is instructive to analyze a 

simple, circular-wire geometry to see how the various transmission line 

parameters and Green's functions are related. 

Consider the two-wire transmission line geometry in figure 9. 

Identical circular wires of radius a are located at a height h and a 

separation s above a perfectly conducting ground plane. The wires are also 

perfectly conducting. We consider the weak coupling case where we assume 

s/h >> 1. We also make the thin-wire assumption (h/a >> 1). 
We consider first the electrostatic problem which leads to the 

capacitance matrix [C]. Line 1 supports a uniform line charge per unit 

length pl and is at a potential V Line 2 also' supports a line charge per 1 ' 

unit length p and is at a potential V Following the formalism of Frankel 2 2 ' 

[a], we write the voltage column vector [V] as the product of the potential 

matrix [PI and the charge matrix [p]: 

[VI = [Pl[pl. 

The potential matrix is the inverse of the capacitance matrix [C]: 

[PI - [cl-? 
The elements of the potential matrLx are [8] 

in(2h/a) P1l - = ZG- 
0 

and 



where d - [s2 + (2h)211/2. Since we have assumed that s/h >> 1, we can 
simplify (B3b) to 

The elements of the capacitance matrix are obtained from the inverse of [P): 

and 

Substituting eqs (B3) and (B4) into (B5), we obtain 

and 

It is also interesting to show how the coupling terms (P 
12 - P21) In 

the potential matrix can be derived from the integral of the Green's 

function ge. We can write the Green's function in the following form: 

where 

2 1/2 
r - is2 + (C2 - f1)211/2 and r - [s2 + (2h12 + (f2 - fl) ] . i 



Then we can write P as the following integral: 21 

which is in agreement with Frankel's result [8] in eq (B3b). 

It is also useful to perform the integral in eq (B8) over finite 

limits, -L to L, to determine what length of the transmission line actually 

contributes significantly to the coupling represented by P21. Thus we 

define P21L as the following finite integral: 

where 

2 1/2 ro - (s2 + ri)1/2 and r - [s2 + (2h12 + rl] . 0 i 

This integral can be evaluated in terms of logarithmic functions and 

approximated to the following form: 

*Or P 2 1 ~  to be approximately equal to P we need the second term in the 21 ' 
parentheses to be small compared to 1. This yields 

The physical interpretation of eq (B11) is that the capacitive coupling to a 

given point on a parallel line occurs primarily from the charge over a 

length 2L approximately equal to 2s. 



Because the inductance matrix [L] is closely related to the potential 

and capacitance matrices, we can obtain the elements from the previous 

analyses. The simplest relationship involves the potential matrix [ 8 ] :  

From eqs (B3a) and (812), the diagonal elements, Lll and L12, are 

From eqs (B4) and (B12), the coupling elements, Ll2 and Lpl, are 

The derivation of L by integrating the magnetic Green's function g over a 12 m 

line with either infinite or finite limits follows the same mathematics as 

the electrostatic case in eqs (B7)-(Bll) and will not be repeated. 

APPENDIX C. SCALE MODELS 

For crosstalk applications involving small microstrip lines, 

measurements are more conveniently done on larger scale models, such as the 

coupled microstrip lines pictured in figure 4. Fox the time-harmonic form 

of Maxwell's equations, scaling of frequency and length in nondispersive, 

lossless media is well known. For the example of frequency-independent 

antennas [26], "the entire electrical performance is frequency-independent 

if all length dimensions are scaled in proportion to frequency." 

Now consider a lossy, inhomogeneous medium (such as a small microstrip 

line) , characterized by position-dependent permittivity E (;) , permeability 



p(?), and conductivity a(r). If we wish to scale up in size by a factor S, 

then the new (primed) parameters need to be related to the original 

(unprimed) parameters by [27] 

e@(G') - E ( ; ) ,  

and 

The length and frequency scaling is as expected, and keeping the 

permeability p equal to the original p is automatic for nonmagnetic 

materials. Keeping the substrate permittivity constant can be done 

approximately for low-dispersion dielectrics, but the main difficulty comes 

in scaling the microstrip and ground-plane conductivities. These 

conductivities of the scale model should be multiplied by a factor 1/S. 

(This means a decrease for S > 1.) 
The required decrease in conductivity for the metal strips and ground 

plane obviously represents a materials problem unless a different metal with 

the required lower conductivity can be used. Normally this is not practical 

because it more convenient to use copper in both the original and scale 

model. Another possibility wouldbe to adjust the thickness of the strips 

and ground plane to obtain the desired resistance R per unit length. The 

scaled resistance R' per unit length should equal the original resistance R 

per unit length times 1/S. The difficulty in controlling R' by adjusting 

metal thickness is that R' depends on thickness in a rather complicated 

manner and is strongly dependent on the ratio of skin depth to thickness. 

If the metal conductivity and thickness are both scaled according to eq 



(C1), the ratio is maintained because both the thickness and skin depth 

increase by a factor S upon scaling. 

~f the metal conductivity is not scaled, then a good loss theory is 

required to make the proper adjustment in metal thickness. The present 

choices are between approximate theories, such as the incremental inductance 

rule [28,29] or the phenomenological loss equivalent method [30], and full- 

wave numerical methods [31,32]. More work is needed in this area. 



line 1 line 2 E 

Figure 1. Cross-sectional geometry for a pair of identical microstrip 
transmission lines, 



line 1 line 2 

Figure 2. Two identical microstrip lines terminated in the characteristic 
impedance Z of an isolated line. Line 1 is excited at port 1. 

0 



line 2 

Figure 3. Two microstrip lines of arbitrary orientation located on the same 
substrate. 



Figure 4. Two identical microstrip lines with coaxial connectors. 



Figure 5. Magnitude of Sgl (near-end crosstalk) from theory and 

measurement. 
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Figure 6. Magnitude of S41 (far-end crosstalk) from theory and measurement. 

Results for the low-frequency theory are not shown because they 
are essentially identical to the more general theory. 



u' 
(I) 
TS 
w 

(I) 
cn 
0 
I_ 

L 

-180" ' " I  I I 
I I I I I l l  I I 1 1  

5 2 5 2 5 

100 1000 
FREQUENCY (MHZ) 

Figure 7. Phase of Sgl (near-end crosstalk) from theory and measurement. 





Figure 9 .  Two identical cixcxlllar wires located in free space over a perfect 
ground plane. 




